Root hemiparasites suppress invasive alien clonal plants: evidence from a cultivation experiment

Author:

Těšitelová TamaraORCID,Knotková KateřinaORCID,Knotek AdamORCID,Cempírková HanaORCID,Těšitel JakubORCID

Abstract

Alien invasive plants threaten biodiversity by rapid spread and competitive exclusion of native plant species. Especially, tall clonal invasives can rapidly attain strong dominance in vegetation. Root-hemiparasitic plants are known to suppress the growth of clonal plants by the uptake of resources from their below-ground organs and reduce their abundance. However, root-hemiparasites’ ability to interact with alien clonal plants has not yet been tested. We explored the interactions between native root-hemiparasitic species, Melampyrum arvense and Rhinanthus alectorolophus and invasive aliens, Solidago gigantea and Symphyotrichum lanceolatum. We investigated the haustorial connections and conducted a pot experiment. We used seeds from wild hemiparasite populations and those cultivated in monostands of the invasive plants to identify a possible selection of lineages with increased compatibility with these alien hosts. The hemiparasitic species significantly suppressed the growth of the invasive plants. Melampyrum inflicted the most substantial growth reduction on Solidago (78%), followed by Rhinanthus (49%). Both hemiparasitic species reduced Symphyotrichum biomass by one-third. Additionally, Melampyrum reduced the shoot density of both host species. We also observed some transgenerational effects possibly facilitating the growth of hemiparasites sourced from subpopulations experienced with the host. Native root hemiparasites can effectively decrease alien clonal plants’ biomass production and shoot density. The outcomes of these interactions are species-specific and may be associated with the level of clonal integration of the hosts. The putative selection of lineages with higher performance when attached to the invasive novel hosts may increase hemiparasites’ efficiency in future biocontrol applications.

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modeling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3