Effect of anthropogenic pressure on grasshopper (Orthoptera: Acridomorpha) species diversity in three forests in southern Cameroon

Author:

Oumarou Ngoute Charly,Kekeunou Sévilor,Lecoq MichelORCID,Nzoko Fiemapong Armand Richard,Um Nyobe Philène Corine Aude,Bilong Bilong Charles Félix

Abstract

Grasshoppers are highly diversified in tropical rainforests and considered of both ecological and conservation importance. The population dynamics of central African grasshoppers, however, and the structure of their communities remain poorly studied. We report here on the impact of human activities on the diversity of grasshopper species from three localities in southern Cameroon: Ongot, more anthropized forest; Zamakoe, moderately anthropized forest; and Ngutadjap, less anthropized forest. Data were collected using sweep nets, quadrats, and pitfall traps. We analyzed how pressures from human activities affected the grasshopper species compositions using five statistical methods: (1) two non-parametric estimators for specific richness, (2) abundance, (3) abundance distribution model, (4) α diversity index, and (5) β diversity index. The results showed no significant differences in species richness between the sites (nine species at Zamakoe, seven each at Ongot and Ngutadjap). Among these species, one was specific to Ongot and Zamakoe, while one, two, and three species, respectively, were found only in Ongot, Ngutadjap, and Zamakoe. Abundance and species diversity of grasshoppers increased with anthropogenic pressure on the forests. We noticed a great similarity between the grasshopper communities of the two localities under the greatest anthropogenic pressure (Ongot and Zamakoe) compared to that of the less anthropized locality of Ngutadjap. The most common grasshopper species, Mazea granulosa, was most abundant where deforestation was highest. Species diversity was highest in the more and moderately anthropized forests, and the diversity index showed greater similarity between these two grasshopper communities compared with that of the less anthropized forest. This work enables us to better understand how the parameters of these insect communities reflect the degree of forest degradation in southern Cameroon.

Publisher

Pensoft Publishers

Subject

Insect Science

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3