Molecular characterization and phylogenetic position of the giant deep-sea oyster Neopycnodonte zibrowii Gofas, Salas & Taviani, 2009

Author:

Garzia MatteoORCID,Salvi DanieleORCID

Abstract

The giant deep-sea oyster Neopycnodonte zibrowii Gofas, C. Salas & Taviani, 2009 is a keystone deep-sea habitat builder species. Discovered about fifteen years ago in the Azores, it has been described and assigned to the genus Neopycnodonte Fischer von Waldheim, 1835 based on morphological features. In this study, we generated DNA sequence data for both mitochondrial (COI and 16S) and nuclear (ITS2 and 28S) markers based on the holotype specimen of N. zibrowii to establish a molecular phylogenetic framework for the systematic assessment of this species and to provide a reliable (i.e., holotype-based) reference sequence set for multilocus DNA barcoding approaches. Molecular data provide compelling evidence that the giant deep-sea oyster is a distinct species, rather than a deep-water ecophenotype of Neopycnodonte cochlear (Poli, 1795), with extremely high genetic divergence from any other gryphaeid. Multilocus phylogenetic analyses place the giant deep-sea oyster within the clade “Neopycnodonte/Pycnodonte” with closer affinity to N. cochlear rather than to P. taniguchii Hayami & Kase, 1992, thus supporting its assignment to the genus Neopycnodonte. Relationships within this clade are not well supported because mitochondrial variation is inflated by saturation that eroded phylogenetic signal, implying an old split between taxa within this clade. Finally, the set of reference barcode sequences of N. zibrowii generated in this study will be useful for a wide plethora of barcoding applications in deep-sea biodiversity surveys. Molecular validation of recent records of deep-sea oysters from the Atlantic Ocean and the Mediterranean Sea will be crucial to clarify the distribution of N. zibrowii and assess the phenotypic variation and ecology of this enigmatic species.

Publisher

Pensoft Publishers

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3