Author:
Mukhamadeev Ruben,Parafilo Leonid,Baranaev Yury,Suvorov Albert
Abstract
Analysis was performed of dynamic phase of severe accident of the EGP-6 reactor of the Bilibino NPP, due to uncontrolled reactivity insertion initiated by withdrawal of two pare of automatic control rods with followed by full failure of reactor emergency protection system. This initial event leads to promt increasing of reactor core power up to 450% of nominal value with short period, coupled with rise of temperature of fuel, pressure and temperature of coolant. These factors lead to crisis of heat exchange with subsequent ruptures tubes of fuel assemblies and coolant blow down into graphite stack. All its lead to rise of pressure in reactor shell and damage of it, outflow of steam-water mixture through up-reactor area to ventilation system, communication corridors and reactor hall and further – to atmospheric release. Transient processes were calculated using code RELAP5/Mod3.2. It was considered stages of processes of fuel damage and evaluated dynamic of a number and degree of damaged fuel assembles. They were grouped on burn-up and for each group it was performed analysis of dynamic of damage values. Further it was considered processes of yield of fission products from damaged fuel with models, based on experimental data on yield of fission products from fuel material, used in assembles of Bilibino NPP fuel type (fuel tubes with steel cladding, where fuel material is grits of uranium dioxide in magnesium), under condition of severe accident, especially performed in SSC IPPE. Transport of fission products with steam and air up to release points was evaluated with models, based on experimental data of fission product transport through graphite stack under conditions of severe accident, also especially performed in SSC IPPE. Evaluation of source term was performed in accordance with accident dynamic and assumed modes of release for conservative and most possible approaches. It was noted good self-protection property of EGP-6 reactor under severe beyond design basis accident condition.