A technique for detection of WWER fuel failures by activity of Xe radionuclides during reactor operation

Author:

Kalinichev Peter,Evdokimov Igor,Likhanskii Vladimir

Abstract

Fuel failures during operation of Nuclear Power Plants (NPPs) may lead to substantial economic losses. Negative effects of reactor operation with leaking fuel in the core may be reduced if fuel failures are detected in due time of the cycle. At present time, the ratio of the normalized release rates of 131I and 134I is used to detect fuel failures in WWERs during steady state operation. However, based on the activity of iodine radionuclides, it is not always possible to detect the fuel failure. This situation may occur in case of a small defect in cladding of a leaking fuel rod or for high burnup fuel if the defect is overlapped by the surface of the fuel pellet. If it is so, fuel deposits may be the dominant contributor to iodine activity, and the fuel failure may not be noticeable. In PWRs, fuel failures are detected by activity of radioactive noble gases. Noble gases are not adsorbed on cladding inner surface, as distinct from iodine radionuclides. Release of noble gases from the leaking fuel rod may be considerable even though defect in cladding is small. In this paper, a technique is proposed for detection of fuel failures at WWER reactors by activity of radioactive noble gases in the primary coolant. It is shown that radioactive noble gases may be a more sensitive indicator of fuel failures than iodine radionuclides. Detection of fuel failures is based on monitoring of the ratio between 133Xe and 135Xe activity. Some examples of practical applications are given.

Publisher

Pensoft Publishers

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3