Geometric morphometric methods for identification of oyster species based on morphology

Author:

Liu QianORCID,Guo Yuepeng,Yang Yanzhuo,Mao Junxia,Wang Xubo,Liu Haijiao,Tian YingORCID,Hao Zhenlin

Abstract

Both genetic and environmental factors affect the morphology of oysters. Molecular identification is currently the primary means of species identification, but it is inconvenient and costly. In this research, we evaluated the effectiveness of geometric morphometric (GM) techniques in distinguishing between two oyster species, Crassostrea gigas and C. ariakensis. We used traditional morphometric and GM methods, including principal component analysis (PCA), thin-plate spline analysis (TPS) and canonical variable analysis (CVA), to identify specific features that distinguish the two species. We found that differences in shape can be visualised using GM methods. The Procrustes analysis revealed significant differences in shell morphology between C. gigas and C. ariakensis. The shells of C. ariakensis are more prominent at the widest point and are more scattered and have a greater variety of shapes. The shells of C. gigas are more oval in shape. PCA results indicated that PC1 explained 45.22%, PC2 explained 22.09% and PC3 explained 10.98% of the variation between the two species, which suggests that the main morphological differences are concentrated in these three principal components. Combining the TPS analysis function plots showed that the shell shape of C. ariakensis is mainly elongated and spindle-shaped, whereas the shell shape of C. gigas is more oval. The CVA results showed that the classification rate for the two species reached 100% which means that C. ariakensis and C. gigas have distinct differences in shell morphology and can be completely separated, based on morphological characteristics. Through these methods, a more comprehensive understanding of the morphological characteristics of different oyster populations can be obtained, providing a reference for oyster classification and identification.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3