Thermohydraulic studies of alkali liquid metal coolants for justification of nuclear power facilities

Author:

Kuzina Yulia A.,Sorokin Aleksandr P.,Delnov Valery N.,Denisova Nataliya A.,Sorokin Georgy A.

Abstract

The paper presents and discusses the results of experimental and computational studies obtained by the authors on hydrodynamics and heat exchange in fuel assemblies of the alkali liquid metal cooled fast reactor cores, and experimental data on hydrodynamics of flow paths in the heat exchanger and reactor header systems. Investigation results are presented on in-tank coolant circulation obtained using a well-developed theory of approximation simulation of the nonisothermic coolant velocity and temperature fields in the fast neutron reactor primary circuit and demonstrating stable stratification and thermal fluctuations in the coolant. Results are presented from experimental and computational simulation of the alkali liquid metal boiling process based on fuel assembly models during an emergency situation caused by an operational occurrence involving simultaneous loss of power for all reactor coolant pumps and the reactor scram rod failure. Objectives are formulated for further studies, achieving which is essential for the evolution of the liquid metal technology, as dictated by the need for the improved safety, environmental friendliness, reliability and longer service life of nuclear power facilities currently in operation and in the process of development.

Publisher

Pensoft Publishers

Subject

General Medicine

Reference17 articles.

1. Scientific School of the SSC RF – IPPE “Heat and Mass Transfer, Physical Chemistry and Technology of Coolants in Power Systems”.;Efanov;Obninsk. SSC RF – International Production & Processing Expo (IPPE) publication,2015

2. Experience in Experimental Validation of the Steam Generators Used in NPP with Fast Reactors

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Electrolysis-Distillation Approach for Producing Potassium Metal;Metallurgical and Materials Transactions B;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3