Abstract
The optical and luminescent properties of undoped La3Ga5.5Ta0.5O14 lanthanum- gallium tantalate crystals grown in different atmospheres of pure argon gas and argon gas with different oxygen percentages have been studied. The optical absorption α(λ) spectra that characterize integral absorption and reflection have been measured in the 250–700 nm region. The spectral absorption functions have been calculated from the measured α(λ) spectra using the Kubelka–Munk formula. Luminescence has been observed in all the test specimens over a wide spectral region (375 to 650 nm) at 95 and 300 K. The luminescence spectra of the test crystals have a fine dispersed pattern represented by low-intensity discrete luminescence peaks. The 95 K luminescence peak maxima are more pronounced and shifted towards shorter wavelengths by ~16 nm (~0.1 eV) relative to the respective room temperature peaks. The crystal growth atmosphere has been demonstrated to largely affect the luminescent properties of the crystals: the higher the oxygen concentration in the growth atmosphere, the lower the luminescence intensity due to concentration quenching, the luminescence peak maxima shifting towards longer wavelengths. The positions of discrete luminescence peaks have been shown to correlate with the main 420 and 480 nm absorption bands with the respective ~20 nm (~0.2 eV) Stokes shift for crystals grown in different atmospheres. The luminescence in lanthanum-gallium tantalate crystals is a complex process involving several luminescence mechanisms.