The influence of macroinvertebrate abundance on the assessment of freshwater quality in The Netherlands

Author:

Beentjes Kevin K.,Speksnijder Arjen G. C. L.,Schilthuizen Menno,Schaub Bartholomeus E.M.,van der Hoorn Berry B.

Abstract

The use of molecular tools for the detection and identification of invertebrate species enables the development of more easily standardisable inventories of biological elements for water quality assessments, as it circumvents human-based bias and errors in species identifications. Current Ecological Quality Ratio (EQR) assessments methods, however, often rely on abundance data. Translating metabarcoding sequence data into biomass or specimen abundances has proven difficult, as PCR amplification bias due to primer mismatching often provides skewed proportions of read abundances. While some potential solutions have been proposed in previous research, we instead looked at the necessity of abundance data in EQR assessments. In this study, we used historical monitoring data from natural (lakes, rivers and streams) and artificial (ditches and canals) water bodies to assess the impact of species abundances on the EQR scores for macroinvertebrates in the Water Framework Directive (WFD) monitoring programme of The Netherlands. By removing all the abundance data from the taxon observations, we simulated presence/absence-based monitoring, for which EQRs were calculated according to traditional methods. Our results showed a strong correlation between abundance-based and presence/absence-based EQRs. EQR scores were generally higher without abundances (75.8% of all samples), which resulted in 9.1% of samples being assigned to a higher quality class. The majority of the samples (89.7%) were assigned to the same quality class in both cases. These results are valuable for the incorporation of presence/absence metabarcoding data into water quality assessment methodology, potentially eliminating the need to translate metabarcoding data into biomass or absolute specimen counts for EQR assessments.

Publisher

Pensoft Publishers

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3