Plant diversity effects on soil multistability

Author:

Eisenhauer NicoORCID,Vogel Cordula,Domeignoz Horta Luiz A.ORCID,Bonato Asato Ana,Janda ZarahORCID,Cesarz Simone

Abstract

Soil is the basis for life on Earth as we know it. Healthy and stable soil is a prerequisite for well-functioning terrestrial ecosystems and has, thus, been proposed to play a key role in plant diversity–ecosystem functioning relationships. The overall objective of this sub-project is to study multidimensional soil stability as affected by plant diversity in a long-term plant diversity experiment. We designed three coordinated work packages (WPs) to comprehensively assess soil multistability to environmental fluctuations and climate extremes by considering the biological, chemical and physical dimensions that are key for soil functioning. We will use all unique facilities and approaches of the Jena Experiment Research Unit by combining synthesis of long-term data in the Main Experiment and the ΔBEF Experiment with performing new soil analyses in the DrY Experiment, the ResCUE Experiment and a joint CoMic Experiment, to gain a better mechanistic understanding of plant diversity–ecosystem functioning relationships. In close collaboration with other sub-projects, we will assess biological, chemical and physical soil properties and stability indicators that will be used to calculate soil multifunctionality and multistability indices. In WP1, we will build on three unique datasets to explore short-term and long-term effects of plant diversity on the stability of soil (microbial) properties. In WP2, we will combine different datasets and approaches to explore if plant diversity effects on the magnitude and stability of soil properties increase with abiotic and biotic stresses. In WP3, we will combine measurements of the above-mentioned dimensions of soil stability to explore if plant diversity increases the stability of multiple soil properties under hot drought. This sub-project is at the heart of the Research Unit by testing the overarching hypotheses outlined in the Coordination Proposal of the Jena Experiment, contributing to all main experiments, sharing data and performing joint sampling campaigns with all sub-projects and, at the same time, introducing a novel concept of soil multistability as affected by plant diversity and climate extremes. We propose to use a combination of simple, high-throughput (e.g. bait-lamina test) and more sophisticated methods (e.g. extracellular polymeric substances analyses) to be able to investigate temporal dynamics of soil processes and their mechanistic basis. Taken together, the results of the three WPs will provide new insights into the stabilising mechanisms of soil properties in the long term and in relation to climate extremes through plant diversity.

Publisher

Pensoft Publishers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3