Simulation of migration and demographic processes using FLAME GPU

Author:

Makarov ValeryORCID,Bakhtizin AlbertORCID,Beklaryan GayaneORCID,Akopov AndranikORCID,Strelkovskii NikitaORCID

Abstract

This article presents an approach to modeling migration and demographic processes using a framework designed for large-scale agent-based modeling – FLAME GPU. This approach is based on the previously developed simulation model of interaction between two communities: migrants and natives that is implemented in the AnyLogic simulation software. The model has had a low dimensionality of the discrete space representing the operating environment of the agent populations and a deterministic decision-making system of each agent. At the same time, the presence of multiple interactions between agents and transitions between their states determines a high computational complexity of such a model. The use of FLAME GPU makes it possible to conduct extensive simulation experiments with the model, mainly due to the parallelization of computational processes at the level of each agent, as well as the implementation of the mechanism of multiple computations using Monte Carlo techniques. The developed framework is used to study the impact of the most important parameters of the model (e.g., rate of migration, governmental expenditures on integration, frequency of creation of new workplaces, etc.) on the key outputs of the modeled socio-economic system (in particular, population size, share of migrants, number of assimilated migrants, GDP growth rate, etc.). The proposed approach can be used to develop decision-making systems for planning the hiring of new employees based on the forecast dynamics of migration and demographic processes.

Publisher

National Research University, Higher School of Economics (HSE)

Subject

Management of Technology and Innovation,Economics and Econometrics,Information Systems,Business and International Management,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3