A survey of malware behavior description and analysis

Author:

Yu BoORCID,Fang Ying,Yang Qiang,Tang Yong,Liu Liu

Funder

National Natural Science Foundation of China

Publisher

Zhejiang University Press

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing

Reference117 articles.

1. Alam S, Horspool RN, Traore I, et al., 2015. A framework for metamorphic malware analysis and real-time detection. Comput Secur, 48:212–233. https://doi.org/10.1016/j.cose.2014.10.011

2. Alazab M, 2015. Profiling and classifying the behavior of malicious codes. J Syst Softw, 100:91–102. https://doi.org/10.1016/j.jss.2014.10.031

3. Alazab M, Venkataraman S, Watters P, 2010. Towards Understanding malware behaviour by the extraction of API calls. Proc 2nd Cybercrime and Trustworthy Computing Workshop, p.52–59. https://doi.org/10.1109/CTC.2010.8

4. Anderson B, Storlie C, Lane T, 2012. Improving malware classification: Bridging the static/dynamic gap. Proc 5th ACM Workshop on Security and Artificial Intelligence, p.3–14. https://doi.org/10.1145/2381896.2381900

5. Anderson B, Lane T, Hash C, 2014. Malware phylogenetics based on the multiview graphical lasso. Proc 13th Int Symposium on Advances in Intelligent Data Analysis XIII, p.1–12. https://doi.org/10.1007/978-3-319-12571-8_1

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Android Malware Detection: A Review of Heuristic-Based Approach;IEEE Access;2024

2. Detecting IoT Malware Using Federated Learning;Lecture Notes in Networks and Systems;2024

3. Efficient Deep Learning Method for Detection of Malware Attacks in Internet of Things Networks;Communications in Computer and Information Science;2024

4. Using deep graph learning to improve dynamic analysis-based malware detection in PE files;Journal of Computer Virology and Hacking Techniques;2023-10-20

5. Android Malware Detection Using Incremental Learning Approach;2023 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom);2023-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3