Author:
Ayoade Abayomi,Nyerere Nkuba,Ibrahim Mohammed
Abstract
Lassa fever is a deadly viral disease whose incubation period ranges from six to twenty-one days and about eighty percent of Lassa virus infection is asymptomatic. A deterministic model was formulated to quantify the transmission dynamics of the disease under isolation and treatment of the isolated asymptomatic and symptomatic humans for effective management and possible elimination of the disease. The solutions of the model were shown to be positive and bounded. Equilibrium analysis was conducted and both the disease-free and the endemic equilibria were derived. The threshold quantity for disease elimination , $R_{0}$ , was also obtained and used to derive conditions for the existence of stability of the eqilibria. The quantity was also employed to examine the sensitivity of the model parameters to disease propagation and reduction. The theoretical analysis was then complemented with the quantitative analysis by adopting a set of realistic values for the model parameters in order to show the effect of isolation and treatment on the spread and fatality of Lassa fever. Results from the quantitative study showed that death and infection from Lassa fever fell continuously as more and more exposed individuals were detected and isolated for treatment. The study therefore suggested that any measure taken to eradicate or curtail Lassa fever spread should include detection and isolation of the exposed humans for prompt treatments.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献