Author:
Basar Feyzi,Braha Naim L.
Abstract
In this paper, we introduce the spaces $\breve{\ell}_{\infty}$, $\breve{c}$ and $\breve{c}_{0}$ of Euler-Ces`aro bounded, convergent and null difference sequences and prove that the inclusions $\ell_{\infty}\subset\breve{\ell}_{\infty}$, $c\subset\breve{c}$ and $c_{0}\subset\breve{c}_{0}$ strictly hold. We show that the spaces $\breve{c}_{0}$ and $\breve{c}$ turn out to be the separable BK spaces such that $\breve{c}$ does not possess any of the following: AK property and monotonicity. We determine the alpha-, beta- and gamma-duals of the new spaces and characterize the matrix classes $(\breve{c}:\ell_{\infty})$, $(\breve{c}:c)$ and $(\breve{c}:c_0)$.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献