Uncertainties of Estimates of Inertia–Gravity Energy in the Atmosphere. Part I: Intercomparison of Four Analysis Systems

Author:

Žagar N.1,Tribbia J.1,Anderson J. L.1,Raeder K.1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract This paper presents the application of the normal-mode functions to diagnose the atmospheric energy spectra in terms of balanced and inertia–gravity (IG) contributions. A set of three-dimensional orthogonal normal modes is applied to four analysis datasets from July 2007. The datasets are the operational analysis systems of NCEP and ECMWF, the NCEP–NCAR reanalyses, and the Data Assimilation Research Testbed–Community Atmospheric Model (DART–CAM), an ensemble analysis system developed at NCAR. The differences between the datasets can be considered as a measure of uncertainty of the IG contribution to the global energetics. The results show that the percentage of IG motion in the present NCEP, ECMWF, and DART–CAM analysis systems is between 1% and 2% of the total energy field. In the wave part of the flow (zonal wavenumber k ≠ 0), the IG energy contribution is between 9% and 15%. On the contrary, the NCEP–NCAR reanalyses contain more IG motion, especially in the Southern Hemisphere extratropics. Each analysis contains more energy in the eastward IG motion than in its westward counterpart. The difference is about 2%–3% of the total wave energy and it is associated with the motions projected onto the Kelvin wave in the tropics. The selected truncation parameters of the expansion (zonal, meridional, and vertical truncation) ensure that the projection provides the optimal fit to the input data on model levels. This approach is different from previous applications of the normal modes and under the linearity assumption it allows the application of the inverse projection to obtain details of circulation associated with a selected type of motion. The bulk of the IG motion is confined to the tropics. For the successful reproduction of three-dimensional circulations by the normal modes it is important that the expansion includes a number of vertical modes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decomposition of Vertical Velocity and Its Zonal Wavenumber Kinetic Energy Spectra in the Hydrostatic Atmosphere;Journal of the Atmospheric Sciences;2023-11

2. The intricacies of identifying equatorial waves;Quarterly Journal of the Royal Meteorological Society;2022-07

3. Atmospheric Energy Spectra in Global Kilometre-Scale Models;Tellus A: Dynamic Meteorology and Oceanography;2022

4. Upward and downward atmospheric Kelvin waves over the Indian Ocean;Quarterly Journal of the Royal Meteorological Society;2021-07

5. Real-Time Identification of Equatorial Waves and Evaluation of Waves in Global Forecasts;Weather and Forecasting;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3