Eddy-Induced Heat Transport in the Subtropical North Pacific from Argo, TMI, and Altimetry Measurements

Author:

Qiu Bo1,Chen Shuiming1

Affiliation:

1. Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract Basin-scale heat transport induced by mesoscale oceanic eddies is estimated by combining satellite-derived sea surface height and temperature [temperature data are from the TRMM Microwave Imager (TMI)] data with Argo float temperature–salinity data. In the North Pacific Ocean subtropical gyre, warm (cold) temperature anomalies of mesoscale eddies are found to be consistently located to the west of high (low) SSH anomalies. The phase misalignment between the temperature and velocity anomalies, however, is largely confined to the seasonal thermocline, causing most of the eddy-induced heat transport to be carried in the surface 200-m layer. By establishing a statistical relationship between the surface and depth-integrated values of the eddy heat transport, the basin-scale eddy heat transport is derived from the concurrent satellite SSH/SST data of the past six years. In the Kuroshio Extension region, the meandering zonal jet is found to generate oppositely signed eddy heat fluxes. As a result, the zonally integrated poleward heat transport associated with the Kuroshio Extension is at a level O(0.1 PW), smaller than the previous estimates based on turbulent closure schemes. Large poleward eddy heat transport is also found in the subtropical North Pacific along a southwest–northeast-tilting band between Taiwan and the Midway Islands. This band corresponds to the region of the subtropical front, and it is argued that the relevant temperature field for identifying this band in the turbulent closure scheme models should be that averaged over the seasonal thermocline.

Publisher

American Meteorological Society

Subject

Oceanography

Reference30 articles.

1. Argo: The global array of profiling floats.;Argo Science Team,2001

2. Eddy heat flux in the subtropical North Pacific.;Bennett;J. Phys. Oceanogr.,1986

3. Ocean heat transport.;Bryden,2001

4. Ocean heat transport cross 24°N in the Pacific.;Bryden;Deep-Sea Res.,1991

5. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific.;Chelton;J. Climate,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3