Predictability of the Loop Current Variation and Eddy Shedding Process in the Gulf of Mexico Using an Artificial Neural Network Approach

Author:

Zeng Xiangming1,Li Yizhen1,He Ruoying1

Affiliation:

1. Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Abstract

AbstractA novel approach based on an artificial neural network was used to forecast sea surface height (SSH) in the Gulf of Mexico (GoM) in order to predict Loop Current variation and its eddy shedding process. The empirical orthogonal function analysis method was applied to decompose long-term satellite-observed SSH into spatial patterns (EOFs) and time-dependent principal components (PCs). The nonlinear autoregressive network was then developed to predict major PCs of the GoM SSH in the future. The prediction of SSH in the GoM was constructed by multiplying the EOFs and predicted PCs. Model sensitivity experiments were conducted to determine the optimal number of PCs. Validations against independent satellite observations indicate that the neural network–based model can reliably predict Loop Current variations and its eddy shedding process for a 4-week period. In some cases, an accurate forecast for 5–6 weeks is possible.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3