Evaluation of Satellite and Reanalysis Wind Products with In Situ Wave Glider Wind Observations in the Southern Ocean

Author:

Schmidt Kevin M.1,Swart Sebastiaan2,Reason Chris3,Nicholson Sarah-Anne2

Affiliation:

1. Marine Research Institute, University of Cape Town, Rondebosch, South Africa

2. Southern Ocean Carbon and Climate Observatory, Council for Scientific and Industrial Research, Rosebank, and Department of Oceanography, University of Cape Town, Rondebosch, South Africa

3. Department of Oceanography, University of Cape Town, Rondebosch, South Africa

Abstract

AbstractSurface ocean wind datasets are required to be of high spatial and temporal resolution and high precision to accurately force or be assimilated into coupled atmosphere–ocean numerical models and to understand ocean–atmospheric processes. In situ observed sea surface winds from the Southern Ocean are scarce and, consequently, the validity of simulation models is often questionable. Multiple wind data products were compared to the first known high-resolution in situ measurements of wind speed from Wave Glider (WG) deployments in the Southern Ocean with the intent to determine which blended satellite or reanalysis product best represents the magnitude and variability of the observed wind field. Results show that the ECMWF reanalysis product is the most accurate in representing the temporal variability of winds, exhibiting consistently higher correlation coefficients with in situ data across all wind speed categories. However, the NCEP–DOE AMIP-II Reanalysis product matches in situ trends of deviation from the mean and performs best in depicting the mean wind state, especially during high wind states. The ECMWF product also leads to smaller differences in wind speeds from the in situ data, while CFSv2 showed slightly higher biases and a greater RMSE. The SeaWinds (SW) product consistently performed poorly at representing the mean or wind stress variability compared to those observed by the WG. Overall, the study shows autonomous surface vehicles provide valuable observations by which to validate, understand, and potentially assist in correcting satellite/reanalysis products, particularly in remote regions, where few in situ estimates exist.

Funder

National Research Foundation

Knut och Alice Wallenbergs Stiftelse

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3