Diurnal Cycles of Synthetic Microwave Sounding Lower-Stratospheric Temperatures from Radio Occultation Observations, Reanalysis, and Model Simulations

Author:

Abstract

Abstract An observationally based global climatology of the temperature diurnal cycle in the lower stratosphere is derived from 11 different satellites with global positioning system–radio occultation (GPS-RO) measurements from 2006 to 2020. Methods used in our analysis allow for accurate characterization of global stratospheric temperature diurnal cycles, even in the high latitudes where the diurnal signal is small but longer time-scale variability is large. A climatology of the synthetic Microwave Sounding Unit (MSU) and Advanced MSU (AMSU) Temperature in the Lower Stratosphere (TLS) is presented to assess the accuracy of diurnal cycle climatologies for the MSU and AMSU TLS observations, which have traditionally been generated by model data. The TLS diurnal ranges are typically less than 0.4 K in all latitude bands and seasons investigated. It is shown that the diurnal range (maximum minus minimum temperature) of TLS is largest over Southern Hemisphere tropical land in the boreal winter season, indicating the important role of deep convection. The range, phase, and seasonality of the TLS diurnal cycle are generally well captured by the WACCM6 simulation and ERA5 dataset. We also present an observationally based diurnal cycle climatology of temperature profiles from 300 to 10 hPa for various latitude bands and seasons and compare the ERA5 data with the observations.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interannual Variability of Zonal Mean Temperature, Water Vapor, and Clouds in the Tropical Tropopause Layer;Journal of Geophysical Research: Atmospheres;2024-02

2. Seasonality of the QBO Impact on Equatorial Clouds;Journal of Geophysical Research: Atmospheres;2023-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3