Skill Assessment of HF Radar–Derived Products for Lagrangian Simulations in the Bay of Biscay

Author:

Solabarrieta Lohitzune1,Frolov Sergey2,Cook Mike3,Paduan Jeff3,Rubio Anna1,González Manuel1,Mader Julien1,Charria Guillaume4

Affiliation:

1. Marine Research Unit, AZTI-Tecnalia, Pasaia, Spain

2. University Corporation for Atmospheric Research, Boulder, Colorado, and Naval Research Laboratory, Monterey, California

3. Naval Postgraduate School, Monterey, California

4. Laboratoire d’Océanographie Physique et Spatiale, Plouzané, France

Abstract

AbstractSince January 2009, two long-range high-frequency (HF) radar systems have been collecting hourly high-spatial-resolution surface current data in the southeastern corner of the Bay of Biscay. The temporal resolution of the HF radar surface currents permits simulating drifter trajectories with the same time step as that of real drifters deployed in the region in 2009. The main goal of this work is to compare real drifter trajectories with trajectories computed from HF radar currents obtained using different methods, including forecast currents. Open-boundary modal analysis (OMA) is applied to the radar radial velocities and then a linear autoregressive model on the empirical orthogonal function (EOF) decomposition of an historical data series is used to forecast OMA currents. Additionally, the accuracy of the forecast method in terms of the spatial and temporal distribution of the Lagrangian distances between observations and forecasts is investigated for a 4-yr period (2009–12). The skills of the different HF radar products are evaluated within a 48-h window. The mean distances between real trajectories and their radar-derived counterparts range from 4 to 5 km for real-time and forecast currents after 12 hours of simulations. The forecast model improves persistence (i.e., the simulations obtained by using the last available OMA fields as a constant variable) after 6 hours of simulation and improves the estimation of trajectories up to 28% after 48 hours. The performance of the forecast is observed to be variable in space and time, related to the different ocean processes governing the local ocean circulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3