R2D2: A Region-Based Recursive Doppler Dealiasing Algorithm for Operational Weather Radar

Author:

Feldmann Monika12,James Curtis N.3,Boscacci Marco2,Leuenberger Daniel2,Gabella Marco2,Germann Urs2,Wolfensberger Daniel12,Berne Alexis1

Affiliation:

1. a Remote Sensing Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland

2. b MeteoSwiss, Zurich, Switzerland

3. c Embry-Riddle Aeronautical University, Prescott, Arizona

Abstract

AbstractRegion-based Recursive Doppler Dealiasing (R2D2) is a novel dealiasing algorithm to unfold Doppler velocity fields obtained by operational radar measurements. It specializes in resolving issues when the magnitude of the gate-to-gate velocity shear approaches or exceeds the Nyquist velocity. This occurs either in highly sheared situations, or when the Nyquist velocity is low. Highly sheared situations, such as convergence lines or mesocyclones, are of particular interest for nowcasting and warnings. R2D2 masks high-shear areas and adds a spatial buffer around them. The areas between the buffers are then identified as continuous regions that lie within the same Nyquist interval. Each region subsequently is assigned its most likely Nyquist interval by applying vertical and temporal continuity constraints, as well as supplemental wind information from an operational mesoscale model. The shear zones are then resolved using 2D continuity in azimuth and range. This 4D procedure is repeated until no further improvement can be achieved. Each iteration with fewer folds identifies fewer but larger continuous regions and less shear zones until an optimum is reached. Residual errors, often related to shear greater than the Nyquist velocity, are contained to small areas within the buffer zones. This approach maximizes operational performance in high-shear situations and restricts errors to minimal areas to mitigate error propagation.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3