An Integrated Method for Determining the Oceanic Bottom Mixed Layer Thickness Based on WOCE Potential Temperature Profiles

Author:

Huang Peng-Qi1,Cen Xian-Rong2,Lu Yuan-Zheng2,Guo Shuang-Xi2,Zhou Sheng-Qi2

Affiliation:

1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and University of Chinese Academy of Sciences, Beijing, China

2. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Abstract

AbstractIn this study we examined the applicability of the threshold, curvature, maximum angle, and relative variance methods for identifying the oceanic bottom mixed layer (BML) thickness . Using full-depth temperature profiles along 17 WOCE sections covering the Atlantic, Indian, and Pacific Oceans, we found that the BML thicknesses determined based on the threshold, curvature, and maximum angle methods had wider 95% confidence intervals and much lower quality indexes compared with those based on the visual inspection (). The relative variance method appeared to perform better than the other methods because the 95% confidence interval and (0.60) values were closer to those determined based on the visual inspection, although differences were still present. We then proposed an integrated method by optimizing the possible values obtained from the four methods. The BML thicknesses determined using the integrated method were closest to those based on the visual inspection according to the higher (0.64) and more stations (71%) with . Compared with the results in previous studies, the integrated method determined the consistent BML thicknesses in most regions (e.g., the northern Atlantic), and it also effectively identified the BML thicknesses in some regions where the BML was considered to be not readily detectable (e.g., the Madeira Abyssal Plain).

Funder

NSF of China

NSF of Guangdong Province, China

the Strategic Priority Research Program of the Chinese Academy of Sciences

the Guangzhou Science and Technology Program key project

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference60 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3