An Accurate Wind Retrieval Method Based on Observing Hydrogen Balloons with Multi-Theodolite Measurements

Author:

Zhou Jie1,Gao Hang1,Wang Xuesong1,Li Jianbing1

Affiliation:

1. a State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, College of Electronic Science and Technology, National University of Defense Technology, Changsha, China

Abstract

Abstract The hydrogen balloon is widely used for wind sensing by tracking it with optical theodolites. The traditional theodolite observation (single- and double-theodolite) methods assume that the balloon is a perfect tracer of the background wind and it rises with a constant speed during the whole observation period, but these assumptions may not hold well in complex wind circumstances. In this paper, an accurate wind field retrieval method based on multi-theodolite measurement is proposed. The extended Kalman filter algorithm is used to filter the angle data observed by the theodolites in order to accurately estimate the trajectory of the balloon, and the motion equation is used to correct the velocity difference between the background wind and the balloon. As a result, not only the horizontal velocity but also the vertical velocity can be accurately retrieved by this method. Numerical simulation and field experiments show that the multi-theodolite observation method excels the traditional single-theodolite method, and the velocity errors can be reduced by even more than 40% in comparison with the single-theodolite method for complex wind cases. Significanace Statement In the meteorological community, hydrogen balloon tracking is a widely used wind retrieval method, but the accuracy is limited, especially under complex wind conditions. In this paper, a new method based on tracking the hydrogen balloon with multi-theodolite is proposed, which uses the extended Kalman filter and the motion equation to get an accurate estimation of the balloon’s velocity and fix the inertia effect of balloon, respectively. Simulation and field experiment show that the new method can reduce the velocity error by more than 40% compared with the traditional method.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference23 articles.

1. Run beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method;Ahmadianfar, I.,2021

2. Fundamentals of Heat and Mass Transfer.;Bergman, T. L.,2020

3. Observing boundary-layer winds from hot-air balloon flights;de Bruijn, E. I. F.,2016

4. On the drag coefficient of a sphere;Flemmer, R.,1986

5. The impact of vertical resolution in the assimilation of GPS radio occultation data;Ha, J.-H.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3