Concept Tests for a New Wire Flying Vehicle Designed to Achieve High Horizontal Resolution Profiling in Deep Water

Author:

Roman Chris1,Hebert Dave1

Affiliation:

1. Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Abstract

Abstract Efficiently profiling the water column to achieve both high vertical and horizontal resolution from a moving vessel in deep water is difficult. Current solutions, such as CTD tow-yos, moving vessel profilers, and undulating tow bodies, are limited by ship speed or water depth. As a consequence, it is difficult to obtain oceanographic sections with sufficient resolution to identify many relevant scales over the deeper sections of the water column. This paper presents a new concept for a profiling vehicle that slides up and down a towed wire in a controlled manner using the lift created by wing foils. The wings provide a novel low-power method of propulsion along the cable by using the free stream velocity of the wire moving through the water in similar fashion to a sailboat sailing up wind. Scale model tests show a wide range of achievable profiling glide slopes for tow cable angles between vertical and 45°, and effective isolation of cable strum vibration from the towed vehicle body. The concept is not depth limited and will offer two-dimensional resolution that meets or exceeds current undulating tow bodies over the full water column. Additionally, this system could be used simultaneously with many other deep towed instrument packages to produce complementary datasets.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference27 articles.

1. Theory of Wing Sections;Abbott,1959

2. Operational oceanography using the ‘new’ SeaSoar ocean undulator;Allen;Sea Technol.,2002

3. MAPR: A new instrument for hydrothermal plume mapping;Baker;Ridge Events,1997

4. On the global distribution of hydrothermal vent fields;Baker,2004

5. Flow-Induced Vibrations;Blevins,1977

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Wire Flyer Towed Profiling System;Journal of Atmospheric and Oceanic Technology;2019-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3