Evaluating Radial Current Measurement of Multifrequency HF Radar with Multidepth ADCP Data during a Small Storm

Author:

Zhao Chen1,Chen Zezong1,Zeng Gengfei1,Zhang Longgang1,Xie Fei1

Affiliation:

1. School of Electronic Information, Wuhan University, Wuhan, China

Abstract

AbstractA multifrequency high-frequency (MHF) radar system was designed and developed by Wuhan University in 2007. This system can simultaneously operate at four frequencies mainly in the 7.5–25-MHz band. This paper focuses on discussing the performances of an MHF radar system deployed along the coast of the East China Sea based on comparisons with multidepth ADCP datasets, which were obtained from ADCPs deployed at different locations in August 2010 during a small storm. The comparisons illustrate that radar-derived radial currents are correlated with ADCP data at mainly a 2–4-m depth with correlation coefficients over 0.95 and RMS differences less than 0.12 m s−1 for both operating frequencies. Bearing offsets at points A, C, and D are computed for different operating frequencies with magnitudes of 0°–11°.The capability of MHF radar to measure currents at different depths is explored. The results indicate that the effective depth of current measurements by MHF radar increases with decreasing operating frequency. A linear regression (with a regression coefficient of 0.0576) of the responses in the mean effective depth on the predictors in radio wavelength is obtained. The dominant semidiurnal and diurnal constituents are also analyzed. The radial current amplitudes of the M2 and K1 constituents are strong in this area during this experiment. The residual currents vary with wind speed, with a correlation coefficient of 0.52. A correlation coefficient of 0.79 between nontidal currents and the radial wind speed after a clockwise rotation of the wind vector by about 50° was obtained.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3