Requirement-Driven Design of Pulse Compression Waveforms for Weather Radars

Author:

Torres Sebastián M.1,Curtis Christopher D.1,Schvartzman David1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR /National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractWith more weather radars relying on low-power solid-state transmitters, pulse compression has become a necessary tool for achieving the sensitivity and range resolution that are typically required for weather observations. While pulse compression is well understood in the context of point-target radar applications, the design of pulse compression waveforms for weather radars is challenging because requirements for these types of systems traditionally assume the use of high-power transmitters and short conventional pulses. In this work, Weather Surveillance Radar-1988 Doppler (WSR-88D) antenna pattern requirements are used to illustrate how suitable requirements can be formulated for the radar range weighting function (RWF), which is determined by the transmitted waveform and any range-time signal processing. These new requirements set bounds on the RWF range sidelobes, which are unavoidable with pulse compression waveforms. Whereas nonlinear frequency modulation schemes are effective at reducing RWF sidelobes, they usually require a larger transmission bandwidth, which is a precious commodity. An optimization framework is proposed to obtain minimum-bandwidth pulse compression waveforms that meet the new RWF requirements while taking into account the effects of any range-time signal processing. Whereas pulse compression is used to meet sensitivity and range-resolution requirements, range-time signal processing may be needed to meet data-quality and/or update-time requirements. The optimization framework is tailored for three processing scenarios and corresponding pulse compression waveforms are produced for each. Simulations of weather data are used to illustrate the performance of these waveforms.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3