The Complementary Value of XBT and Argo Observations to Monitor Ocean Boundary Currents and Meridional Heat and Volume Transports: A Case Study in the Atlantic Ocean

Author:

Goes Marlos12,Goni Gustavo2,Dong Shenfu2,Boyer Timothy3,Baringer Molly2

Affiliation:

1. a Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

2. b National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

3. c National Oceanic and Atmospheric Administration/National Center for Environmental Information, College Park, Maryland

Abstract

AbstractThis work assesses the value of expendable bathythermograph (XBT) and Argo profiling float observations to monitor the Atlantic Ocean boundary current systems (BCS), meridional overturning circulation (MOC), and meridional heat transport (MHT). Data from six XBT transects and available Argo floats in the Atlantic Ocean for the period from 2000 to 2018 are used to estimate the structure and variability of the BCS, MOC, and MHT, taking into account different temporal and spatial mapping strategies. The comparison of Argo data density along these six XBT transects shows that Argo observations outnumber XBT observations only above mapping scales of 30 days and 3° boxes. The comparison of Argo and XBT data for the Brazil Current and Gulf Stream shows that Argo cannot reproduce the structure and variability of these currents, as it lacks sufficient resolution to resolve the gradients across these narrow jets. For the MHT and MOC, Argo estimates are similar to those produced by XBTs at a coarse mapping resolution of 5° and 30 days. However, at such a coarse resolution the root-mean-square errors calculated for both XBT and Argo estimates relative to a high-resolution baseline are higher than 3 Sv (1 Sv ≡ 106 m3 s−1) and 0.25 PW for the MOC and MHT, respectively, accounting for about 25%–30% of their mean values due to the smoothing of eddy variability along the transects. A key result of this study is that using Argo and XBT data jointly, rather than separately, improves the estimates of MHT, MOC, and BCS.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3