High-Resolution Seafloor Absolute Pressure Gauge Measurements Using a Better Counting Method

Author:

Webb Spahr C.1,Nooner Scott L.2

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

2. Department of Geography and Geology, University of North Carolina at Wilmington, Wilmington, North Carolina

Abstract

AbstractVibrating quartz force transducers are the critical component of most deep-sea pressure and depth gauges in use in oceanography, producing a frequency output that varies with pressure. Accurate and low drift pressure measurements can be obtained by precisely measuring this frequency. In most implementations, the frequency is determined by counting the number of cycles of a high-frequency standard oscillator occurring during a large number of cycles of the lower-frequency quartz force oscillator. Resolution is limited by the sampling interval (length of counting) and the frequency of the frequency standard. Alternative counting methods can provide significant (20–40 dB) improvements in resolution at sampling rates above 1 Hz. Each counting method can be described as a different filter applied to the output of a counter of the frequency standard gated at each transition of the transducer quartz oscillator. Improvements in resolution can be understood as the result of minimizing the aliasing of higher-frequency counting noise into the spectrum below the Nyquist frequency. A simple multipole infinite impulse response (IIR) filter designed to limit spectral leakage of high-frequency noise minimizes the noise spectrum and thereby optimizes the resolution of the pressure output. The resultant noise spectrum rises as frequency squared above 1 Hz, independent of the sampling rate. At frequencies below 1 Hz, it is limited by noise in the electronics driving the force transducer quartz oscillator. Resolution increases with frequency of the frequency standard up to about 200 MHz, plateauing for higher frequencies due to other noise sources (likely electronic).

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3