Dominant Characteristics of Early Autumn Arctic Sea Ice Variability and Its Impact on Winter Eurasian Climate

Author:

Ding Shuoyi1,Wu Bingyi1,Chen Wen2

Affiliation:

1. a Institute of Atmospheric Sciences, Fudan University, Shanghai, China

2. b Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractThe present study investigated dominant characteristics of autumn Arctic sea ice concentration (SIC) interannual variations and impacts of September–October (SO) mean SIC anomalies in the East Siberian–Chukchi–Beaufort (EsCB) Seas on winter Eurasian climate variability. Results showed that the decreased SO EsCB sea ice is favorable for tropospheric warming and positive geopotential height anomaly over the Arctic region one month later through transporting much more heat flux to the atmosphere from the open water. When entering the early winter (November–January), enhanced upward propagation of quasi-stationary planetary waves in the mid-high latitudes generates anomalous Eliassen–Palm flux convergence in the upper troposphere, which decelerates the westerly winds and maintains the positive geopotential height anomaly in the Arctic region. This anticyclonic anomaly extends southward into central-western Eurasia and leads to evident surface cooling there. Two months later, it further develops downstream accompanied by a deepened trough, making northeastern China experience a colder late winter (January–March). Meanwhile, an anticyclonic anomaly over the eastern North Pacific excites a horizontal eastward wave train and contributes to a positive (negative) geopotential height anomaly around Greenland (Europe), favoring a negative surface temperature anomaly over western Europe. In addition, the stratospheric polar vortex is also significantly weakened in the wintertime, which is attributed to a decreased meridional temperature gradient, and decelerated westerly winds provide a favorable condition for more quasi-stationary planetary waves propagating into the stratosphere. Some major features of atmospheric responses to EsCB sea ice loss are well reproduced in the CAM4 sensitivity experiments.

Funder

the State Key Program of National Natural Science of China

the National Natural Science Foundation of China

the Major Program of the National Natural Science Foundation of China

the National Science Foundation for Post-doctoral Scientists of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3