Indo-Pacific Variability on Seasonal to Multidecadal Time Scales. Part I: Intrinsic SST Modes in Models and Observations

Author:

Slawinska Joanna1,Giannakis Dimitrios2

Affiliation:

1. Center for Environmental Prediction, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

2. Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

Abstract

The variability of Indo-Pacific SST on seasonal to multidecadal time scales is investigated using a recently introduced technique called nonlinear Laplacian spectral analysis (NLSA). Through this technique, drawbacks associated with ad hoc prefiltering of the input data are avoided, enabling recovery of low-frequency and intermittent modes not previously accessible via classical approaches. Here, a multiscale hierarchy of spatiotemporal modes is identified for Indo-Pacific SST in millennial control runs of CCSM4 and GFDL CM3 and in HadISST data. On interannual time scales, a mode with spatiotemporal patterns corresponding to the fundamental component of ENSO emerges, along with ENSO-modulated annual modes consistent with combination mode theory. The ENSO combination modes also feature prominent activity in the Indian Ocean, explaining a significant fraction of the SST variance in regions associated with the Indian Ocean dipole and suggesting a deterministic relationship between these patterns. A pattern representing the tropospheric biennial oscillation also emerges along with its associated annual cycle combination modes. On multidecadal time scales, the dominant NLSA mode in the model data is predominantly active in the western tropical Pacific; this pattern is referred to here as the west Pacific multidecadal mode (WPMM). The interdecadal Pacific oscillation also emerges as a distinct NLSA mode, though with smaller explained variance than the WPMM. Analogous modes on interannual and decadal time scales are also identified in HadISST data for the industrial era, as well as in model data of comparable time span, though decadal modes are either absent or of degraded quality in these datasets.

Funder

Office of Naval Research

MURI

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3