Local Atmospheric Response to an Open-Ocean Polynya in a High-Resolution Climate Model

Author:

Weijer Wilbert1,Veneziani Milena1,Stössel Achim2,Hecht Matthew W.1,Jeffery Nicole1,Jonko Alexandra1,Hodos Travis3,Wang Hailong4

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, New Mexico

2. Texas A&M University, College Station, Texas

3. U.S. Air Force Academy, Colorado Springs, Colorado

4. Pacific Northwest National Laboratory, Richland, Washington

Abstract

Abstract In this paper the atmospheric response to an open-ocean polynya in the Southern Ocean is studied by analyzing the results from an atmospheric and oceanic synoptic-scale resolving Community Earth System Model (CESM) simulation. While coarser-resolution versions of CESM generally do not produce open-ocean polynyas in the Southern Ocean, they do emerge and disappear on interannual time scales in the synoptic-scale simulation. This provides an ideal opportunity to study the polynya’s impact on the overlying and surrounding atmosphere. This has been pursued here by investigating the seasonal cycle of differences of surface and air-column variables between polynya and nonpolynya years. The results indicate significant local impacts on turbulent heat fluxes, precipitation, cloud characteristics, and radiative fluxes. In particular, it is found that clouds over polynyas are optically thicker and higher than clouds over sea ice during nonpolynya years. Although the lower albedo of polynyas significantly increases the net shortwave absorption, the enhanced cloud brightness tempers this increase by almost 50%. Also, in this model, enhanced longwave radiation emitted from the warmer surface of polynyas is balanced by stronger downwelling fluxes from the thicker cloud deck. Impacts are found to be sensitive to the synoptic wind direction. The strongest regional impacts are found when northeasterly winds cross the polynya and interact with katabatic winds. Surface air pressure anomalies over the polynya are only found to be significant when cold, dry air masses strike over the polynya (i.e., in the case of southerly winds).

Funder

Office of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3