The Antarctic Circumpolar Wave: Its Presence and Interdecadal Changes during the Last 142 Years

Author:

Cerrone D.1,Fusco G.2,Cotroneo Y.1,Simmonds I.3,Budillon G.2

Affiliation:

1. Science and Technology Department, University of Naples Parthenope, Naples, Italy

2. Science and Technology Department, University of Naples Parthenope, Naples, and Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy

3. School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Abstract

The Southern Ocean (SO) is the region of the World Ocean bordering on Antarctica over which significant exchanges between the atmosphere, the ocean, and the sea ice take place. Here, the strong and nearly unhindered eastward flow of the Antarctic Circumpolar Current plays an important role in mean global climate as it transmits climate anomalies around the hemisphere. Features of interannual variability have been observed to propagate eastward around the SO with the circumpolar flow in the form of a system of coupled anomalies, known as the Antarctic circumpolar wave (ACW). In the present study, the 142-yr series of the Twentieth Century Reanalysis, version 2, dataset (850-hPa geopotential height, sea level pressure, sea surface temperature, surface meridional wind, and surface air temperature) spanning from 1871 to 2012 is used to investigate the presence and variability of ACWs. This examination shows, for the first time, the presence of the ACW before the mid-1950s and interdecadal changes in its characteristics. Modifications in the strength and speed of the circumpolar wave are shown to be linked with large-scale climate changes. Complex empirical orthogonal function analyses confirm that the ACW becomes apparent when the tropical El Niño–Southern Oscillation (ENSO) signal gives rise to the Pacific–South American (PSA) pattern and is a consequence of the constructive combination of the PSA and the subantarctic zonal wavenumber 3. Correlation analyses are also performed to quantify the role played by ENSO teleconnections for the appearance of the ACW, and the impact on the presence of ACWs of three super–El Niño events is investigated.

Funder

Australian Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3