A Comparative Analysis of Kuroshio Extension Indices from a Modeling Perspective

Author:

Pierini Stefano1

Affiliation:

1. Dipartimento di Scienze e Tecnologie, Università di Napoli Parthenope, Naples, Italy

Abstract

Abstract Dynamical indices previously introduced to characterize the Kuroshio Extension (KE) decadal variability (DV) from altimeter data are comparatively analyzed to assess their ability to reveal the same phenomenon from model outputs. Based on this analysis, a new combined index identifying each stage of the KE DV in numerical simulations is then proposed. The analysis begins by recognizing that the numerical simulation of the nonlinear frontal KE DV is very sensitive to changes in model implementation, whereas the linear broad-scale baroclinic Rossby wave field known to trigger the KE DV is a robust model feature. This selective model sensitivity poses a subtle problem concerning the diagnosis of the KE DV from model outputs, and requires the use of indices that unequivocally identify the KE frontal structure. The capability of six indices to achieve this task is thus investigated. Two model outputs representing paradigms of a fairly realistic simulation and of an unrealistic simulation in which only the broad-scale variability is present are used. A synthesized index is well captured by both simulations: it is therefore recognized to be unsuitable for model studies. An integrated SSH index does not resolve explicitly the frontal variability. Among the remaining indices, the KE path length (modified through the application of the wavelet transform) and the mean KE latitudinal position are shown to provide, in combination, an unambiguous identification of each stage of the KE DV (recognized to exhibit chaotic hysteresis) and are therefore suggested to be used with model outputs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3