Impact of Daily Arctic Sea Ice Variability in CAM3.0 during Fall and Winter

Author:

Dammann Dyre O.1,Bhatt Uma S.2,Langen Peter L.3,Krieger Jeremy R.4,Zhang Xiangdong5

Affiliation:

1. Department of Atmospheric Sciences, College of Natural Sciences and Mathematics, Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks, Alaska

2. Department of Atmospheric Sciences, College of Natural Sciences and Mathematics, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

3. Danish Climate Centre, Danish Meteorological Institute, Copenhagen, Denmark

4. Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks, Alaska

5. International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Abstract

Abstract Climate projections suggest that an ice-free summer Arctic Ocean is possible within several decades and with this comes the prospect of increased ship traffic and safety concerns. The daily sea ice concentration tendency in five Coupled Model Intercomparison Project phase 5 (CMIP5) simulations is compared with observations to reveal that many models underestimate this quantity that describes high-frequency ice movements, particularly in the marginal ice zone. To investigate whether high-frequency ice variability impacts the atmosphere, the Community Atmosphere Model, version 3.0 (CAM3.0), is forced by sea ice with and without daily fluctuations. Two 100-member ensemble experiments with daily varying (DAILY) and smoothly varying (SMTH) sea ice are conducted, along with a climatological control, for an anomalously low ice period (August 2006–November 2007). Results are presented for three periods: September 2006, October 2006, and December–February (DJF) 2006/07. The atmospheric response differs between DAILY and SMTH. In September, sea ice differences lead to an anomalous high and weaker storm activity over northern Europe. During October, the ice expands equatorward faster in DAILY than SMTH in the Siberian seas and leads to a local response of near-surface cooling. In DJF, there is a 1.5-hPa positive sea level pressure anomaly over North America, leading to anomalous northerly flow and anomalously cool continental U.S. temperatures. While the atmospheric responses are modest, the differences arising from high temporal frequency ice variability cannot be ignored. Increasing the accuracy of coupled model sea ice variations on short time scales is needed to improve short-term coupled model forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3