Terminating the Last Interglacial: The Role of Ice Sheet–Climate Feedbacks in a GCM Asynchronously Coupled to an Ice Sheet Model

Author:

Herrington Adam R.1,Poulsen Christopher J.1

Affiliation:

1. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Abstract

Abstract Climatic deterioration in northeastern Canada following the last interglacial resulted in the formation and abrupt expansion of the Laurentide Ice Sheet. However, the physical mechanisms leading to rapid ice sheet expansion are not well understood. Here, the authors report on experiments using an ice sheet model asynchronously coupled to a GCM to investigate the role of ice sheet–climate feedbacks in terminating the last interglacial period. In agreement with simpler models, the experiments indicate that a specific type of ice–albedo feedback, the small ice cap instability, is the dominant process controlling rapid expansion of the Laurentide Ice Sheet. As ice elevations increase in northeastern Canada, a stationary wave forms and strengthens over the Laurentide Ice Sheet, which acts to hinder further expansion of the ice margin and reduce the effect of the small ice cap instability. The sensitivity of these feedbacks to ice topography results in a reduction in simulated ice volume when the communication interval between the GCM and ice sheet model is lengthened since this permits larger gains in ice elevation between GCM updates and biases the simulation toward a stronger stationary wave feedback. The shortest communication interval (500 yr) leads to a Laurentide ice volume of 6 × 106 km3 in 10 kyr, which is less than ice volume estimates based on the geological record but is a substantial improvement over previous GCM studies. The authors discuss potential improvements to the asynchronous coupling scheme that would more accurately resolve ice sheet–climate feedbacks, potentially leading to greater simulated ice volume.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference57 articles.

1. Growth rate of the Laurentide Ice Sheet and sea level lowering (with emphasis on the 115,000 BP sea level low);Andrews;Quat. Res.,1976

2. Glacial inception and disintegration during the last glaciation;Andrews;Annu. Rev. Earth Planet. Sci.,1978

3. Continental ice sheets: Conditions for growth;Barry;Science,1975

4. Insolation values for the climate of the last 10 million years;Berger;Quat. Sci. Rev.,1991

5. Calculation of degree-days for glacier-climate research;Braithwaite;Z. Gletscherkd. Glazialgeol.,1984

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3