Global Distribution of Snow Precipitation Features and Their Properties from 3 Years of GPM Observations

Author:

Adhikari Abishek1,Liu Chuntao1,Kulie Mark S.2

Affiliation:

1. Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

2. Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, Michigan

Abstract

Abstract Using a 3-yr Global Precipitation Mission (GPM) Ku-band Precipitation Radar (KuPR) dataset, snow features (SFs) are defined by grouping the contiguous area of nonzero solid precipitation. The near-surface wet bulb temperatures calculated from ERA-Interim reanalysis data are used to verify that SFs are colder than 1°C to omit snowfall that melts before reaching the surface. The properties of SFs are summarized to understand the global distribution and characteristics of snow systems. The seasonal and diurnal variations of SFs and their properties are analyzed over Northern and Southern Hemispheric land and ocean separately. To quantify the amount of snow missed by the GPM KuPR and the amount of snow underestimated by the CloudSat Cloud Profiling (CPR), 3-yr KuPR pixel-level data are compared with 4-yr CloudSat CPR observations. The overall underestimation of snowfall during heavy snow events by CPR is less than 3% compared to the combined CPR and KuPR estimates. KuPR underestimates about 52% of weak snow. Only a small percentage of SFs have sizes greater than 10 000 km2 (0.35%), maximum near-surface reflectivity above 30 dBZ (5.1%), or echo top above 5 km (1.6%); however, they contribute 40%, 49.5%, or 30.4% of the global volumetric snow detected by KuPR. Snow in the Northern Hemisphere has stronger diurnal and seasonal variation compared to the Southern Hemisphere. Most of the SFs over the ocean are found with relatively smaller, less intense, and shallower echo tops than over land.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3