Affiliation:
1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
2. State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing, China
3. Public Meteorological Service Center, China Meteorological Administration, Beijing, China
Abstract
Strongly influenced by thermodynamic stability, the planetary boundary layer (PBL) is key to the exchange of heat, momentum, and moisture between the ground surface and free troposphere. The PBL with different thermodynamic stability across the whole of China, however, is not yet well understood. In this study, the occurrence frequency and spatial distribution of the convective boundary layer (CBL), neutral boundary layer (NBL), and stable boundary layer (SBL) were systematically investigated, based on intensive summertime soundings launched at 1400 Beijing time (BJT) throughout China’s radiosonde network (CRN) for the period 2012 to 2016. Overall, the occurrences of CBL, NBL, and SBL account for 70%, 26%, and 4%, respectively, suggesting that CBL dominates in summer throughout China. In terms of the spatial pattern of PBL height, a prominent north–south gradient can be found with higher PBL height in northwest China. In addition, the PBL heights of CBL and NBL were found to be positively (negatively) associated with near-surface air temperature (humidity), whereas no apparent relationship was found for SBL. Furthermore, clouds tend to reduce the occurrence frequency, irrespective of PBL type. Roughly 70% of SBL cases occur under overcast conditions, much higher than those for NBL and CBL, indicating that clouds govern to some extent the occurrence of SBL. In contrast, except for the discernible changes in PBL height under overcast conditions relative to those under clear-sky conditions, the changes in PBL height under partly cloudy conditions are no more than 170 m for both NBL and CBL types.
Funder
National Natural Science Foundation of China
Chinese Academy of Meteorological Sciences
Department of S and T for Social Development
Publisher
American Meteorological Society
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献