PNA Predictability at Various Time Scales

Author:

Younas Waqar1,Tang Youmin2

Affiliation:

1. Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada

2. Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada, and State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, China

Abstract

Abstract In this study, the predictability of the Pacific–North American (PNA) pattern is evaluated on time scales from days to months using state-of-the-art dynamical multiple-model ensembles including the Canadian Historical Forecast Project (HFP2) ensemble, the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) ensemble, and the Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES). Some interesting findings in this study include (i) multiple-model ensemble (MME) skill was better than most of the individual models; (ii) both actual prediction skill and potential predictability increased as the averaging time scale increased from days to months; (iii) there is no significant difference in actual skill between coupled and uncoupled models, in contrast with the potential predictability where coupled models performed better than uncoupled models; (iv) relative entropy (REA) is an effective measure in characterizing the potential predictability of individual prediction, whereas the mutual information (MI) is a reliable indicator of overall prediction skill; and (v) compared with conventional potential predictability measures of the signal-to-noise ratio, the MI-based measures characterized more potential predictability when the ensemble spread varied over initial conditions. Further analysis found that the signal component dominated the dispersion component in REA for PNA potential predictability from days to seasons. Also, the PNA predictability is highly related to the signal of the tropical sea surface temperature (SST), and SST–PNA correlation patterns resemble the typical ENSO structure, suggesting that ENSO is the main source of PNA seasonal predictability. The predictable component analysis (PrCA) of atmospheric variability further confirmed the above conclusion; that is, PNA is one of the most predictable patterns in the climate variability over the Northern Hemisphere, which originates mainly from the ENSO forcing.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3