Observing and Modelling the Surface Radiative Budget and Cloud Radiative Forcing at the Cabauw Experimental Site for Atmospheric Research (CESAR), the Netherlands, 2009–17

Author:

Boers Reinout1,Bosveld Fred1,Baltink Henk Klein1,Knap Wouter1,van Meijgaard Erik1,Wauben Wiel1

Affiliation:

1. Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Abstract

AbstractA dataset of 9 years in duration (2009–17) of clouds and radiation was obtained at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Cloud radiative forcings (CRF) were derived from the dataset and related to cloud cover and temperature. Also, the data were compared with RCM output. Results indicate that there is a seasonal cycle (i.e., winter, spring, summer, and autumn) in longwave (CRF-LW: 48.3, 34.4, 30.8, and 38.7 W m−2) and shortwave (CRF-SW: −23.6, −60.9, −67.8, and −32.9 W m−2) forcings at CESAR. Total CRF is positive in winter and negative in summer. The RCM has a cold bias with respect to the observations, but the model CRF-LW corresponds well to the observed CRF-LW as a result of compensating errors in the difference function that makes up the CRF-LW. The absolute value of model CRF-SW is smaller than the observed CRF-SW in summer, mostly because of albedo differences. The majority of clouds from above 2 km are present at the same time as low clouds, so the higher clouds have only a small impact on CRF whereas low clouds dominate their values. CRF-LW is a function of fractional cloudiness. CRF-SW is also a function of fractional cloudiness, if the values are normalized by the cosine of solar zenith angle. Expressions for CRF-LW and CRF-SW were derived as functions of temperature, fractional cloudiness, and solar zenith angle, indicating that CRF is the largest when fractional cloudiness is the highest but is also large for low temperature and high sun angle.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Downscaling Methods;Climate Change in Sustainable Water Resources Management;2022

2. Validation and consistency assessment of land surface temperature from geostationary and polar orbit platforms: SEVIRI/MSG and AVHRR/Metop;ISPRS Journal of Photogrammetry and Remote Sensing;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3