Revisiting ENSO Coupled Instability Theory and SST Error Growth in a Fully Coupled Model

Author:

Larson Sarah M.1,Kirtman Ben P.1

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Abstract A coupled model framework is presented to isolate coupled instability induced SST error growth in the ENSO region. The modeling framework using CCSM4 allows for seasonal ensembles of initialized simulations that are utilized to quantify the spatial and temporal behavior of coupled instabilities and the associated implications for ENSO predictability. The experimental design allows for unstable growth of initial perturbations that are not prescribed, and several cases exhibit sufficiently rapid growth to produce ENSO events that do not require a previous ENSO event, large-scale wind trigger, or subsurface heat content precursor. Without these precursors, however, ENSO amplitude is reduced. The initial error growth exhibits strong seasonality with fastest growth during spring and summer and also dependence on the initialization month with the fastest growth occurring in the July ensemble. Peak growth precedes the peak error, and evidence suggests that the final state error may be sensitive to a slight temperature bias in the initialized SST. The error growth displays a well-defined seasonal limit, with ensembles initialized prior to fall exhibiting a clear seasonal halt in error growth around September, consistent with increased background stability typical during fall. Overall, coupled instability error growth in CCSM4 is deemed best characterized by strong seasonality, dependence on the initialization month, and nonlinearity. The results pose real implications for predictability because the final error structure is ENSO-like and occurs without a subsurface precursor, which studies have shown to be essential to ENSO predictability. Despite the large error growth induced by coupled instabilities, analysis reveals that ENSO predictability is retained for most seasonal ensembles.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3