Soil Moisture Drought in China, 1950–2006

Author:

Wang Aihui1,Lettenmaier Dennis P.2,Sheffield Justin3

Affiliation:

1. Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Beijing, China

2. Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

3. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Abstract

Abstract Four physically based land surface hydrology models driven by a common observation-based 3-hourly meteorological dataset were used to simulate soil moisture over China for the period 1950–2006. Monthly values of total column soil moisture from the simulations were converted to percentiles and an ensemble method was applied to combine all model simulations into a multimodel ensemble from which agricultural drought severities and durations were estimated. A cluster analysis method and severity–area–duration (SAD) algorithm were applied to the soil moisture data to characterize drought spatial and temporal variability. For drought areas greater than 150 000 km2 and durations longer than 3 months, a total of 76 droughts were identified during the 1950–2006 period. The duration of 50 of these droughts was less than 6 months. The five most prominent droughts, in terms of spatial extent and then duration, were identified. Of these, the drought of 1997–2003 was the most severe, accounting for the majority of the severity–area–duration envelope of events with areas smaller than 5 million km2. The 1997–2003 drought was also pervasive in terms of both severity and spatial extent. It was also found that soil moisture in north central and northeastern China had significant downward trends, whereas most of Xinjiang, the Tibetan Plateau, and small areas of Yunnan province had significant upward trends. Regions with downward trends were larger than those with upward trends (37% versus 26% of the land area), implying that over the period of analysis, the country has become slightly drier in terms of soil moisture. Trends in drought severity, duration, and frequency suggest that soil moisture droughts have become more severe, prolonged, and frequent during the past 57 yr, especially for northeastern and central China, suggesting an increasing susceptibility to agricultural drought.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3