Characteristics of Recent Vehicle-Related Fatalities during Active Precipitation in the United States

Author:

Tobin Dana M.1,Kumjian Matthew R.1,Black Alan W.2

Affiliation:

1. Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. Department of Geography, Southern Illinois University Edwardsville, Edwardsville, Illinois

Abstract

Abstract Data from the National Highway Traffic Safety Administration’s (NHTSA) Fatality Analysis Reporting System (FARS) database were used to identify vehicle-related fatalities that occurred during active precipitation from 2013 to 2017. Changes to FARS for 2013–present allow the identification of freezing rain, in addition to rain, snow, sleet, and precipitation mixtures as prevailing precrash atmospheric conditions. The characteristics of vehicle-related fatalities for each precipitation type identified in FARS were assessed in terms of total numbers, roadway surface conditions, location, and annual and diurnal variability. Vehicle-related fatalities were also matched to nearby Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS) precipitation-type reports to determine their agreement with precipitation types documented in FARS. Of the vehicle-related fatalities examined, 8.6% occurred during precipitation, with these fatalities further divided by precipitation type of approximately 81% rain, 14% snow, and 5% sleet, freezing rain, and mixtures of precipitation. Unexpected discrepancies between the numbers of sleet- versus freezing-rain-related fatalities reveal that caution should be taken when using FARS to identify these precipitation types. ASOS/AWOS precipitation-type reports have moderate agreement with FARS at 20 mi (32.2 km), and are capable of distinguishing precipitation and nonprecipitation indicated in FARS. Rain and snow have good agreement between the databases, whereas sleet, freezing rain, and precipitation mixtures have significantly reduced agreement due to a combination of ASOS/AWOS limitations and suspected FARS limitations. To provide a more accurate account of precipitation types for fatal crashes, the use of crashes where FARS-identified precipitation types are confirmed by nearby ASOS/AWOS reports is suggested.

Funder

Pennsylvania Space Grant Consortium

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3