The Role of Wave-Induced Coriolis–Stokes Forcing on the Wind-Driven Mixed Layer

Author:

Polton Jeff A.1,Lewis David M.1,Belcher Stephen E.1

Affiliation:

1. Department of Meteorology, University of Reading, Reading, Berkshire, United Kingdom

Abstract

Abstract The interaction between the Coriolis force and the Stokes drift associated with ocean surface waves leads to a vertical transport of momentum, which can be expressed as a force on the mean momentum equation in the direction along wave crests. How this Coriolis–Stokes forcing affects the mean current profile in a wind-driven mixed layer is investigated using simple models, results from large-eddy simulations, and observational data. The effects of the Coriolis–Stokes forcing on the mean current profile are examined by reappraising analytical solutions to the Ekman model that include the Coriolis–Stokes forcing. Turbulent momentum transfer is modeled using an eddy-viscosity model, first with a constant viscosity and second with a linearly varying eddy viscosity. Although the Coriolis–Stokes forcing penetrates only a small fraction of the depth of the wind-driven layer for parameter values typical of the ocean, the analytical solutions show how the current profile is substantially changed through the whole depth of the wind-driven layer. It is shown how, for this oceanic regime, the Coriolis–Stokes forcing supports a fraction of the applied wind stress, changing the boundary condition on the wind-driven component of the flow and hence changing the current profile through all depths. The analytical solution with the linearly varying eddy viscosity is shown to reproduce reasonably well the effects of the Coriolis–Stokes forcing on the current profile computed from large-eddy simulations, which resolve the three-dimensional overturning motions associated with the turbulent Langmuir circulations in the wind-driven layer. Last, the analytical solution with the Coriolis–Stokes forcing is shown to agree reasonably well with current profiles from previously published observational data and certainly agrees better than the standard Ekman model. This finding provides evidence that the Coriolis–Stokes forcing is an important mechanism in controlling the dynamics of the upper ocean.

Publisher

American Meteorological Society

Subject

Oceanography

Reference35 articles.

1. Handbook of Mathematical Function.;Abramowitz,1972

2. Preliminary results from the Long-Term Upper-Ocean Study (LOTUS).;Briscoe;Dyn. Atmos. Oceans,1984

3. Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges.;Brown;Bound.-Layer Meteor.,2001

4. Direct evidence for an Ekman balance in the California Current.;Chereskin;J. Geophys. Res.,1995

5. Modeling wave-enhanced turbulence in the ocean surface layer.;Craig;J. Phys. Oceanogr.,1994

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3