Numerical Investigation of Solitary Internal Wave-Induced Global Instability in Shallow Water Benthic Boundary Layers

Author:

Diamessis Peter J.1,Redekopp Larry G.1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California

Abstract

Abstract The time-dependent boundary layer induced by a weakly nonlinear solitary internal wave in shallow water is examined through direct numerical simulation. Waves of depression and elevation are both considered. The mean density field corresponds to that typical of the coastal ocean and lakes where the lower fraction of the water column is subject to the stabilizing effect of a diffuse stratification. Sufficient resolution of the “inviscid” dynamics of the boundary layer is ensured through use of a Legendre spectral multidomain discretization scheme in the vertical direction. At higher Reynolds numbers, where the simulations become underresolved, because of restrictions in available computational resources, spectral accuracy and numerical stability at the scales of physical interest are preserved through use of a penalty scheme in the vertical and explicit spectral filtering. Thus, a highly accurate description of the qualitative dynamics of the wave-induced global instability is possible and finescale physical mechanisms critical to the appearance of this instability are not smeared out by the high artificial dissipation inherent in lower-order finite-difference schemes. Results indicate that, for a wave amplitude exceeding a critical value, the global instability occurs in regions near the bottom boundary where the wave induces an adverse pressure gradient. The structure of the associated separation bubble is modified through the establishment of coherent and synchronous dynamics, characterized by elevated levels of bottom shear stress and a periodic shedding of coherent vortex structures. Although details of the vortex shedding depend on the particular wave forcing involved, these vortical structures always ascend high into the water column. All findings suggest that this global instability is a potent mechanism for benthic turbulence, mixing, and possible sediment resuspension in shallow waters, presumably even more intense than the nominal turbulent boundary layer.

Publisher

American Meteorological Society

Subject

Oceanography

Reference72 articles.

1. Multi-dimensional asymptotically stable finite difference schemes for the advection-diffusion equation.;Abarbanel;Comput. Fluids,1999

2. Seasonal evolution of the basin-scale internal wave field in a large stratified lake.;Antenucci;Limnol. Oceanogr,2000

3. Non-linear features of internal waves as derived from Seasat imaging radar.;Apel,1981

4. High-frequency internal waves in large stratified lakes.;Boegman;Limnol. Oceanogr,2003

5. A mechanism for sediment resuspension by internal solitary waves.;Bogucki;Geophys. Res. Lett,1999

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3