Environmental Controls on the Simulated Diurnal Cycle of Warm-Season Precipitation in the Continental United States

Author:

Trier S. B.1,Davis C. A.1,Ahijevych D. A.1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract The diurnal cycle of warm-season precipitation in the Rocky Mountains and adjacent Great Plains of the United States is examined using a numerical modeling framework designed to isolate the role of terrain-influenced diurnally varying flows within a quasi-stationary longwave pattern common to active periods of midsummer convection. Simulations are initialized using monthly averaged conditions and contain lateral boundary conditions that vary only with the diurnal cycle. Together these attributes mitigate effects of transient weather disturbances originating upstream of the model domain. After a spinup period, the final 7 days of the 10-day model integration are analyzed and compared with observations. Results indicate that many salient features of the monthly precipitation climatology are reproduced by the model. These include a stationary afternoon precipitation frequency maximum over the Rocky Mountains followed overnight by an eastward-progressing zone of maximum precipitation frequencies confined to a narrow latitudinal corridor in the Great Plains. The similarity to observations despite the monthly averaged initial and lateral boundary conditions suggests that although progressive weather disturbances (e.g., mobile cold fronts and midtropospheric short waves) that originate outside of the region may help enhance and focus precipitation in individual cases, they are not crucial to the general location and diurnal cycle of midsummer precipitation. The roles of persistent daily features such as the nocturnal low-level jet and the thermally induced mountain–plains vertical circulation on both convection and a mesoscale water budget of the central Great Plains (where the heaviest rain occurs) are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3