The Dimensional Characteristics of Ice Crystal Aggregates from Fractal Geometry

Author:

Schmitt C. G.1,Heymsfield A. J.1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract Ice crystal aggregates imaged by aircraft particle imaging probes often appear to be fractal in nature. As such, their dimensional properties, mass, and projected area can be related using fractal geometry. In cloud microphysics, power-law mass (m)– and area (A)–dimensional (D) relationships (e.g., m = aDb) incorporate different manifestations of the fractal dimension as the exponent (b). In this study a self-consistent technique is derived for determining the mass and projected area properties of ice particles from fractal geometry. A computer program was developed to simulate the crystal aggregation process. The fractal dimension of the simulated aggregates was estimated using the box counting method in three dimensions as well as for two-dimensional projected images of the aggregates. The two- and three-dimensional fractal dimension values were found to be simply related. This relationship enabled the development of mass–dimensional relationships analytically from cloud particle images. This technique was applied to data collected during two field projects. The exponent in the mass–dimensional relationship, the fractal dimension, was found to be between 2.0 and 2.3 with a dependence on temperature noted for both datasets. The coefficient a in the mass–dimensional relationships was derived in a self-consistent manner. Temperature-dependent mass–dimensional relationships have been developed. Cloud ice water content estimated using the temperature-dependent relationship and particle size distributions agreed well with directly measured ice water content values. The results are appropriate for characterizing cloud particle properties in clouds with high concentrations of ice crystal aggregates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference16 articles.

1. A recipe for image characterization of fractal-like aggregates.;Brasil;J. Aerosol Sci.,1999

2. Improved measurements of the ice water content of cirrus using a total-water probe.;Brown;J. Atmos. Oceanic Technol.,1995

3. On the orientation of ice crystals in a cumulonimbus cloud.;Cho;J. Atmos. Sci.,1981

4. Fractal Geometry Mathematical Foundations and Applications.;Falconer,2003

5. The specific surface area of fresh dendritic snow crystals.;Fassnacht;Hydrol. Processes,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3