Affiliation:
1. a NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
2. b Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
Abstract
Abstract
The variational method for vortex flow (VF) analyses, called VF-Var (formulated in Part I), is applied to the 20 May 2013 Newcastle–Moore tornadic mesocyclone observed from the operational KTLX radar and an experimental phased-array radar. The dual-Doppler-analyzed VF field reveals the following features: The axisymmetric part of the VF is a well-defined slantwise two-cell vortex in which the maximum tangential velocity is nearly 40 m s−1 at the edge of the vortex core (0.6 km from the vortex center), the central downdraft velocity reaches −35 m s−1 at 3-km height, and the surrounding-updraft velocity reaches 26 m s−1 at 5-km height. The total VF field is a loosely defined slantwise two-cell vortex consisting of a nearly axisymmetric vortex core (in which the ground-relative surface wind speed reaches 50 m s−1 on the southeast edge), a strong nonaxisymmetric slantwise downdraft in the vortex core, and a main updraft in a banana-shaped area southeast of the vortex core, which extends slantwise upward and spirals cyclonically around the vortex core. The single-Doppler analysis with observations from the KTLX radar only exhibits roughly the same features as the dual-Doppler analysis but contains spurious vertical-motion structures in and around the vortex core. Analysis errors are assessed by leveraging the findings from Parts II and III, which indicate that the dual-Doppler-analyzed VF is accurate enough to represent the true VF but the single-Doppler-analyzed VF is not (especially for nonaxisymmetric vertical motions in and around the vortex core), so the dual-Doppler-analyzed VF should be useful for initializing/verifying high-resolution tornado simulations.
Significance Statement
After the variational method for vortex flow (VF) analyses, called VF-Var (formulated in Part I of this paper series), was tested successfully with simulated radar observations in Part II and its sensitivity to vortex center location error was examined in Part III, the method is now applied to the 20 May 2013 Newcastle–Moore tornadic mesocyclone observed from the operational KTLX radar and an experimental phased-array radar. Analysis errors are assessed by leveraging the findings from Parts II and III. The results indicate that the dual-Doppler-analyzed VF is accurate enough to represent the true VF (although the single-Doppler-analyzed VF is not especially for nonaxisymmetric vertical motions in and around the vortex core) and thus should be useful for initializing/verifying high-resolution tornado simulations.
Publisher
American Meteorological Society
Reference24 articles.
1. 20 May 2013 Moore, Oklahoma, tornado: Damage survey and analysis;Burgess, D.,2014
2. Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.
3. Davies-Jones, R., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., University of Oklahoma Press, 197–236.10.1175/0065-9401-28.50.167
4. Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–222.10.1175/0065-9401-28.50.167
5. Axisymmetric tornado simulations with various turbulence models;Fiedler, B. H.,2010
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献