Evaluation of Short-Range Quantitative Precipitation Forecasts from a Time-Lagged Multimodel Ensemble

Author:

Yuan Huiling1,Lu Chungu2,McGinley John A.3,Schultz Paul J.3,Jamison Brian D.3,Wharton Linda3,Anderson Christopher J.2

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

2. NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

3. NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Abstract

Abstract Short-range quantitative precipitation forecasts (QPFs) and probabilistic QPFs (PQPFs) are investigated for a time-lagged multimodel ensemble forecast system. One of the advantages of such an ensemble forecast system is its low-cost generation of ensemble members. In conjunction with a frequently cycling data assimilation system using a diabatic initialization [such as the Local Analysis and Prediction System (LAPS)], the time-lagged multimodel ensemble system offers a particularly appealing approach for QPF and PQPF applications. Using the NCEP stage IV precipitation analyses for verification, 6-h QPFs and PQPFs from this system are assessed during the period of March–May 2005 over the west-central United States. The ensemble system was initialized by hourly LAPS runs at a horizontal resolution of 12 km using two mesoscale models, including the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the Weather Research and Forecast (WRF) model with the Advanced Research WRF (ARW) dynamic core. The 6-h PQPFs from this system provide better performance than the NCEP operational North American Mesoscale (NAM) deterministic runs at 12-km resolution, even though individual members of the MM5 or WRF models perform comparatively worse than the NAM forecasts at higher thresholds and longer lead times. Recalibration was conducted to reduce the intensity errors in time-lagged members. In spite of large biases and spatial displacement errors in the MM5 and WRF forecasts, statistical verification of QPFs and PQPFs shows more skill at longer lead times by adding more members from earlier initialized forecast cycles. Combing the two models only reduced the forecast biases. The results suggest that further studies on time-lagged multimodel ensembles for operational forecasts are needed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference50 articles.

1. The LAPS wind analysis.;Albers;Wea. Forecasting,1995

2. Cluster analysis of multimodel ensemble data from SAMEX.;Alhamed;Mon. Wea. Rev.,2002

3. Determining the resolved spatial scales of Eta model precipitation forecasts.;Baldwin,2002

4. Sensitivity of several performance measures to displacement error, bias, and event frequency.;Baldwin;Wea. Forecasting,2006

5. Short-range ensemble forecasts of precipitation during the southwest monsoon.;Bright;Wea. Forecasting,2002

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3