Evaluation of Snowfall Retrieval Performance of GPM Constellation Radiometers Relative to Spaceborne Radars

Author:

You Yalei1ORCID,Huffman George2,Petkovic Veljko1,Milani Lisa23,Yang John X.1,Ebtehaj Ardeshir4,Vahedizade Sajad4,Gu Guojun1

Affiliation:

1. a Department of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, North Carolina

2. b NASA Goddard Space Flight Center, Greenbelt, Maryland

3. c Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

4. d Department of Civil Environmental and Geo-Engineering and the Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota

Abstract

Abstract This study assesses the level-2 snowfall retrieval results from 11 passive microwave radiometers generated by the version 5 Goddard profiling algorithm (GPROF) relative to two spaceborne radars: CloudSat Cloud Profiling Radar (CPR) and Global Precipitation Measurement (GPM) Ku-band Precipitation Radar (KuPR). These 11 radiometers include six conical scanning radiometers [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), its successor sensor AMSR2, GPM Microwave Imager (GMI), and three Special Sensor Microwave Imager/Sounders (SSMIS)] and five cross-track scanning radiometers [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHS)]. Results show that over ocean conical scanning radiometers have better detection and intensity estimation skills than cross-track sensors, likely due to the availability and usage of the low-frequency channels (e.g., 19 and 37 GHz). Over land, AMSR-E and AMSR2 have noticeably worse performance than other sensors, primarily due to the lack of higher than 89-GHz channels (e.g., 150, 166, and 183 GHz). Over both land and ocean, all 11 sensors severely underestimate the snowfall intensity, which propagates to the widely used level 3 precipitation product [i.e., Integrated Multi-satelliteE Retrievals for GPM (IMERG)]. These conclusions hold regardless of using either KuPR or CPR as the reference, though the statistical metrics vary quantitatively. The conclusions drawn from these comparisons apply solely to the GPROF version 5 algorithm.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference74 articles.

1. Comparative assessment of snowfall retrieval from microwave humidity sounders using machine learning methods;Adhikari, A.,2020

2. What does CloudSat reveal about global land precipitation detection by other spaceborne sensors?;Behrangi, A.,2014

3. Using the airborne snow observatory to assess remotely sensed snowfall products in the California Sierra Nevada;Behrangi, A.,2018

4. The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions;Bennartz, R.,2001

5. Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR;Casella, D.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3