Evaluation of ERA5 Reanalysis Precipitation Data in the Yarlung Zangbo River Basin of the Tibetan Plateau

Author:

Chen Yueli1ORCID,Ding Minghu1,Zhang Guo2,Wang Ying3,Li Jianduo2

Affiliation:

1. a State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

2. b CMA Earth System Modeling and Prediction Centre, Beijing, China

3. c China Construction Eco-Environmental Group Co., Ltd., Beijing, China

Abstract

Abstract Atmospheric simulation-based gridded precipitation datasets have been widely used in hydrological and land surface modeling, but may contain larger uncertainties in mountainous regions. This study compared the performance of the fifth European Centre for Medium-Range Weather Forecasts reanalysis (ERA5) precipitation data with two fused precipitation datasets [China Meteorological Administration Land Data Assimilation System version 2.0 (CLDAS2.0) and China Meteorological Forcing Dataset (CMFD)] in the Yarlung Zangbo River basin (YZRB), which has a complex terrain and climate. Compared to in situ observations, ERA5 could capture the spatial–temporal pattern of precipitation but showed high precipitation, especially in the downstream region (lower Nuxia discharge station). In terms of the correlation coefficient, the overall performance of the ERA5 data was slightly worse than that for CMFD data at both the monthly and yearly scales, and was comparable to that of the CLDAS2.0 data. Given that the spatial mismatch between the gridded and in situ data may influence the evaluation, we also employed the water balance method to constrain basinwide precipitation amounts. We found that CLDAS2.0 and CMFD precipitation data tended to cause long-term water imbalance, and ERA5, with a much larger multiyear average annual precipitation, could better close the water budget. Further analysis showed that the differences in multiyear average annual precipitation between ERA5 and in situ observations were closely related to the slope and standard deviation of the subgrid-scale orography, indicating the substantial influence of subgrid topography on precipitation simulation. These findings highlight that ERA5 could be a potential reference dataset for hydrological modeling of the YZRB.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference64 articles.

1. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better?;Albergel, C.,2018

2. Anders, A. M., G. H. Roe, B. Hallet, D. R. Montgomery, N. J. Finnegan, and J. Putkonen, 2006: Spatial patterns of precipitation and topography in the Himalaya. Spec. Pap. Geol. Soc. Amer., 398, 39–53, https://doi.org/10.1130/2006.2398(03).

3. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling;Beck, H. E.,2017

4. Using GRACE to constrain precipitation amount over cold mountainous basins;Behrangi, A.,2017

5. Assessing reliability of precipitation data over the Mekong River Basin: A comparison of ground-based, satellite, and reanalysis datasets;Chen, A.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3